SYNTHESIS OF OPTICALLY ACTIVE NATURAL CAULERPOL

Yukio MASAKI*, Kinji HASHIMOTO, Hironobu IWAI, and Kenji KAJI Gifu College of Pharmacy, 5-6-1 Mitahora Higashi, Gifu-Shi 502

Synthesis of caulerpol ($\underline{1}$) from (S)-(-)- χ -cyclogeraniol ($\underline{2}$), determining the absolute configuration of the asymmetric center is reported.

Caulerpol $(\underline{1})^{1}$ is an optically active diterpene alcohol isolated from a marine algae, <u>Caulerpa brownii</u> and was reported as the first compound with retinol carbon skeleton from plant sources. Although a synthesis of the racemic form of $\underline{1}$ was reported, the absolute configuration of the asymmetric center (*) remained undetermined. We describe here the first synthesis of optically active natural caulerpol $(\underline{1})$ from easily available (S)-(-)-(C)-cyclogeraniol $(\underline{2})$, determining (S)-configuration of the asymmetric center (*). Although several successful syntheses of physiologically active terpenes have been reported $\underline{3}$ using optically active $\underline{3}$ -cyclocitral $\underline{3}$ as a versatile key intermediate for asymmetric $\underline{3}$ -cyclogeranyl portion, no attempt to employ optically active $\underline{3}$ -cyclogeraniol $\underline{1}$ or its enantiomer) for such purpose has been made, which seems to be more useful than $\underline{3}$ for syntheses of cyclic terpenes possessing the partial structure $\underline{4}$. We intended to investigate the utility of $\underline{2}$ for syntheses of the class of terpenoids mentioned above. Caulerpol $\underline{1}$ seemed to be the simplest attractive synthetic model for such intention.

Optically active (S)-(-)-d-cyclogeraniol ($\underline{2}$), [d] $_{D}^{30}$ -115°(EtOH), was obtained by the known procedure from d-cyclogeranic acid. In order to realize carbon-

OH

A

OB21

OB21

OB21

OB21

OB21

S-Ph

Bz1: benzy1

$$\underline{\underline{6}}$$
 $\underline{\underline{5}}$

OH

OH

 $\underline{\underline{A}}$

OB21

 $\underline{\underline{5}}$

OB21

carbon bond formation, transformation of 2 to the bromide (4) or the sulfide (5) was investigated. Unfortunately the bromination of $\underline{2}$ with PBr₃ or CBr₄-Ph₃P was unsuccessful.⁴⁾ In turn, direct conversion of $\underline{2}$ to the sulfide $(\underline{5})$, $[\alpha]_{D}^{30}$ -172° (EtOH), was realized by treatment with diphenyldisulfide and tri-n-butyl phosphine in pyridine at room temperature for 2 days in 83% yield. 5) Oxidation of 5 with sodium meta-periodate in aq.MeOH gave an epimeric mixture of sulfoxides $(\underline{6})$ (86%), desired nucleophilic partner for carbon-carbon coupling. The construction of the whole carbon skeleton of 1 was achieved by coupling of the sulfoxide (6) with trans allylic bromide (7)⁶⁾ derived from trans-10-hydroxygeranyl benzyl ether. 7) the sulfoxide (6) was lithiated with an equivalent of lithium diisopropylamide in THF at -20° under argon for 30 min. A THF solution of the bromide (7) was added into the solution of the lithiated sulfoxide and the mixture was gradually warmed up to 10° (during ca. 1 hr). A usual work-up afforded a diastereoisomeric mixture of coupled sulfoxides (8). After rough chromatographic removal of a trace amount of the remaining bromide (7) on silica gel, the crude sulfoxide (8) was submitted to the Birch reduction with lithium in ethylamine at -78° for 30 min followed by quenching with 1,3-butadiene. Purification of the resulted crude alcohol by columun chromatography on silica gel gave oily $\underline{1}$ (60% overall yield from the sulfoxde ($\underline{6}$), [$\underline{6}$] $\underline{0}^{30}$ -96° (MeOH), which was identified with authentic natural caulerpol (1) 1) provided by Dr. A. J. Blackman, in every respect involving optical rotation. Thus, the absolute configuration of the asymmetric center (*) of 1 was determined as (S).

The successful use of optically active ϕ -cyclogeraniol (2) described above appears to be promising for its application to syntheses of terpenes possessing the partial structure (A) in the molecules, e.g., pallescensin-1, -A, and ferruginol.

<u>Acknowledgement</u> We thank Dr. A. J. Blackman, The University of Tasmania, for providing authentic natural caulerpol.

References and Notes

- 1) A. J. Blackman and R. J. Wells, Tetrahedron Lett., 1976, 2729.
- 2) T. Kato, H. Takayanagi, T. Uyehara and Y. Kitahara, Tetrahedron Lett., 1977, 1009.
- 3) a) M. Shibasaki, S. Terashima and S. Yamada, Chem. Pharm. Bull., 23, 272, 279 (1975) and references cited therein; b) T. Matsumoto and S. Usui, Chem. Lett., 1978, 105, 897.
- 4) Bromination of $\mbox{$\zeta$}$ -cyclogeraniol under analogous conditions was also unsuccessful; unpublished results.
- 5) A. Fischli, Q. Branca and J. Daly, Helv. Chim. Acta, 59, 2443 (1976).
- 6) The bromide (7) was obtained from the corresponding alcohol by treatment with PBr₃ in ether at 0° for 20 hr in 85% yield.
- 7) L. J. Altman, L. Ash and S. Marson, Synthesis, <u>1974</u>, 129; Y. Masaki, K. Hashimoto and K. Kaji, Tetrahedron Lett., in press.

(Received August 21, 1978)